Stakeholder Engagement

- Initial phase of stakeholder engagement nearing completion

 External:
 - Renewable generation customers – Solar - Wind
 - Demand response providers
 - Energy storage providers

 Internal:
 - Planning Teams
 - Operations Team

- Gathering and reviewing information/feedback to inform the Terms of Reference for the project

- Further stakeholder engagement meetings will be planned before year end and throughout the project
External Collaboration:

- The project team is member of the ENA Working Group on Security of Supply standards (for GB and NI) and is interacting to ensure best practice is employed

Consultancy support:

- Enquiry documentation preparation finalised
- Enquiry to open shortly
- Plan is to appoint consultants to support the project work, to commence in early 2019
Planning Standards Review – Project Update

Updates:

- Updates provided at DCRP meetings 27th June / 2nd October

- Ongoing updates will be provided primarily through future DCRP and GCLG meetings
DSO Connections Overview

24th October 2018
Typical DSO Connections considered

Least Cost Technically Acceptable (LCTA) solution:

Connection Type A
WFPSs are classed as being connection type A when connected, at 110kV to a DSO operated 110kV busbar.

Connection Type B
WFPSs are classed as being connection type B when connected at a Distribution System voltage (≤ 38 kV) to a dedicated WFPS(s) transmission station. There are no load Customers connected to the DSO operated 38/20/10kV busbar.
Typical DSO Connections considered

Connection Type C

WFPSs are classed as being connection type C when connected to the Distribution System via a dedicated feeder into an existing 110kV station.

Connection Type D

WFPSs are classed as being connection type D when connected to the Distribution System via a dedicated 38kV, 20kV or 10kV feeder into an existing 38kV distribution station.
Typical DSO Connections considered

Connection Type E

WFPSs are classed as being connection type E when connected to an existing distribution line with load.
Technical studies

Transformer Capacity Availability of transformer capacity is assessed for the connection of any generator:

- A 10% overload on transformer MVA rating is permitted
- Conditions of minimum load are assessed
- Existing committed generation is accounted for
- Real and reactive power flow accounted for
- Any resultant transformer overload will drive a transformer reinforcement

Link to ESB Networks Generator connection presentation

Link to Distribution code
Thank you